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a  b  s  t  r  a  c  t

Objectives:  Drowsy  driving  is  a serious  highway  safety  problem.  If  drivers  could  be warned  before  they
became  too drowsy  to drive  safely,  some  drowsiness-related  crashes  could  be prevented.  The presentation
of  timely  warnings,  however,  depends  on reliable  detection.  To  date,  the  effectiveness  of  drowsiness
detection  methods  has  been  limited  by  their  failure  to  consider  individual  differences.  The  present  study
sought  to  develop  a drowsiness  detection  model  that  accommodates  the  varying  individual  effects  of
drowsiness  on  driving  performance.
Methods:  Nineteen  driving  behavior  variables  and  four  eye  feature  variables  were  measured  as  partici-
pants  drove  a fixed  road  course  in  a high  fidelity  motion-based  driving  simulator  after  having  worked
an  8-h  night  shift.  During  the  test,  participants  were  asked  to report  their  drowsiness  level  using the
Karolinska  Sleepiness  Scale  at the  midpoint  of each  of  the  six rounds  through  the  road  course.  A  mul-
tilevel  ordered  logit  (MOL)  model,  an ordered  logit  model,  and an artificial  neural  network  model  were
used  to  determine  drowsiness.
Results:  The  MOL  had  the highest  drowsiness  detection  accuracy,  which  shows  that  consideration  of
individual  differences  improves  the  models’  ability  to detect  drowsiness.  According  to the  results,  per-
centage  of eyelid  closure,  average  pupil  diameter,  standard  deviation  of lateral  position  and  steering
wheel  reversals  was  the most  important  of the  23  variables.
Conclusion:  The  consideration  of  individual  differences  on a drowsiness  detection  model  would  increase
the  accuracy  of  the  model’s  detection  accuracy.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Drowsy driving is a serious threat to road safety. In 2009, over
800 fatalities and 30,000 injuries from car crashes were attributed
to drowsy driving in the United States (NHTSA, 2011). In Europe,
an estimated 20% of traffic crashes are caused by drowsy driving
(Maycock, 1997). The problem seems more serious in China where,
in 2007, 1768 fatalities were attributed to drowsy driving (Road
and Transport Authority, 2009). Considering that, as of 2012, China
had over 85,000 km of expressways (Central Intelligence Agency,
2010), and the annual growth in kilometers exceeded 14% during
2002–2011, the problem requires immediate attention. A recent
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study using a naturalistic driving method estimated the increase
in crash risk associated with drowsy driving to be four to six times
greater than when driving while alert (Klauer et al., 2006). Besides
increasing crash risk, drowsy driving crashes are often more severe
than other crashes because they frequently occur on high speed
expressways, and are frequently run-off-the-road crashes with no
braking prior to impact.

Unlike drinking and driving, drowsy driving does not provide
an objective measure of its occurrence, and therefore enforce-
ment cannot be used to counter this problem (Radun et al.,
2012). An alternative would be to notify the driver if he or she
becomes too drowsy to drive safely. This requires the reliable
detection of drowsy driving – a problem that has been extensively
researched. Based on the type of data used, drowsiness detection
can be conveniently separated into the two  categories of intrusive
and non-intrusive methods. Intrusive methods, such electroen-
cephalograms (EEGs) (Li et al., 2012) or electrocardiograms (EKGs)
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(Patel et al., 2011), show good detection accuracy, however, are
limited to the research laboratory. In contrast, methods based on
non-intrusive measures detect drowsiness by measuring driving
behavior and sometimes eye features, and so are useful for real
world driving situations.

To date, non-intrusive methods have been less reliable than
intrusive methods, partly because individual driver differences in
non-intrusive measures have prevented identification of a com-
mon  point at which drowsiness impairs driving (Ingre et al., 2006b;
Jo et al., 2014). In the previous research, individual differences of
non-intrusive methods are frequently mentioned, for both driving
behavior and eye features. For driving behavior, it was reported
that an important measure to drowsiness is the standard devia-
tion of lateral position (SDLP), and this research found that, for
the same drowsiness level, different drivers have different SDLPs.
(Ingre et al., 2009). Another study finds individual differences in
driver’s lane departure behavior (Ingre et al., 2006a), and individual
differences in the standard deviation of steering wheel movements
is also reported (Thiffault and Bergeron, 2003). Regarding eye fea-
tures, individual differences of blink duration (Ingre et al., 2009;
Hamada et al., 2003) and percentage of eyelid closure (PERCLOS)
(Wierwille et al., 1994) were also observed in many studies. How-
ever, most drowsiness detection methods such as decision trees,
logistic regression, Bayesian networks (Yang et al., 2010), artificial
neural networks (Patel et al., 2011), and support vector machines
(Hu and Zheng, 2009) have not properly handled the problem of
differences in the manifestation of drowsiness among individuals.
Ignoring such differences reduces the accuracy and reliability of
these models, especially for the important non-intrusive measures.

An ideal fatigue-detection system should rank favorably on sev-
eral specific non-intrusive criteria (Balkin et al., 2011). To address
and increase the accuracy for a drowsiness detection model based
on non-intrusive measures, a multilevel logit model was built based
on both driving behavior measures and eye features, which detect
drowsiness by using individual-specific criteria. To compare detec-
tion accuracy, two non-individual specific models (i.e., ordered
logit model and artificial neural network) were established. Driving
behavior, eye features, and subjective drowsiness were scaled and
collected in a high-fidelity driving simulator experiment.

2. Method

2.1. Participants

Sixteen male participants aged 24–40 (mean 32.8, SD 5.0) with
valid Chinese drivers licenses were recruited from students (two)
and staffs (fourteen) at Tongji University. They were required to
be in good health, have no sleep related disorders, and not to have
taken any pharmaceuticals within one month prior to entering the
study. Subjects who had a history of motion sickness were screened
out. All subjects provided written consent and were paid about 200
RMB  Yuan, depending on the total time in the laboratory. During
the experiment, one subject’s eye movement data was  lost because
of a technical problem. One subject fell asleep before completing
the task, however, his data up to that point was  used.

2.2. Apparatus

The Tongji University driving simulator is shown in Fig. 1. This
simulator, currently the most advanced in China, incorporates
a fully instrumented Renault Megane III vehicle cab in a dome
mounted on an 8 degree-of-freedom motion system with an X–Y
range of 20 m × 5 m.  An immersive 5 projector system provides a
front image view of 250◦ × 40◦ at 1000 × 1050 resolution refreshed
at 60 Hz. LCD monitors provide rear views at the central and side

mirror positions. For this study, SCANeRTM studio software rep-
resented the simulated roadway and controlled a force feedback
system that acquired data from the steering wheel, pedals and gear
shift lever.

Eye movement data were recorded using a Smarteye® eye track-
ing system. The system uses four cameras located in the front of the
vehicle to record the driver’s eye movements at a 60 Hz sampling
rate.

2.3. Procedure

2.3.1. Experiment design
All participating drivers were presented with the same condi-

tions in the same order. The driving course, diagrammed in Fig. 2,
simulated a 20 km rural highway circle with six lanes and 3.75 m
width: composed of the straight segments numbered 1, 3, 5, 9, 11,
13; two  circle curves each with a 700-m radius (segments num-
bered 7, 15); and several transition curves (numbered 2, 4, 6, 8,
10, 12, 14, 16). The length of each straight line was 2 km, and only
the straight line road segments were used for the analysis. Grass
and trees were placed beside the highway, as well as a few small
villages along the straight segments.

To assess driving performance at high levels of drowsiness, night
shift workers were selected and tested just after shift completion
around 8:00 a.m. Upon arrival at the simulator facility, participants
were asked to complete questionnaires on their basic driver infor-
mation and current levels of drowsiness. To increase the reliability
of their self-assessment of drowsiness levels, drivers were provided
with clear explanations of the Karolinska Sleepiness Scale (KSS).
Then drivers spent 5 min  familiarizing themselves with driving the
simulator. At about 8:30 a.m., they received the main test, in which
each subject was  asked to drive and respect road rules for 1 h.

In order to induce drowsiness,

• The driving task was reduced to one lane, eliminating the need
to change lanes;

• Drivers were required to drive at a constant speed (120 km/h),
eliminating the need for manual gear changes;

• No radio or music was played;
• No environmental disturbances (e.g., crosswinds) were

introduced;
• All driving was during daytime periods and no tunnel or weather

changes occurred, eliminating the need to adjust headlights;
• Only occasional and uneventful traffic was present.
• After the main test, participants were asked to complete post-

experiment questionnaires on their levels of drowsiness.

2.3.2. Measurement of drowsiness – participants’ assessments
To track drivers’ drowsiness changes during the 1 h driving

task, the participants were asked to report their Karolinska Sleepi-
ness Scale (KSS) level at the midpoint of the driving course. To
increase the reliability of drowsiness level, a carefully KSS expla-
nation before the experiment was implemented to the driver. KSS
uses a 9-point ordinal scale, but it is not necessary to distinguish all
nine levels. It is, however, necessary to identify the drowsiness level
associated with a high crash risk. Several studies (Yang et al., 2010;
Åkerstedt and Gillberg, 1990) suggest that serious behavioral and
physiological changes do not occur until KSS ≥ 7. In addition, the
description of KSS 7 is sleep, but no effort to keep alert, while KSS 8
and 9 are described as need some or great effort to keep alert. This
difference in the level of effort needed to keep alert may affect the
crash risk, and justifies dividing these KSS levels. Therefore, drowsi-
ness in this study is categorized into three drowsiness levels (DL)
as follows:

• Level 1 (DL = 1): KSS range from 1 to 6, no drowsiness or low-level
drowsiness;
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Fig. 1. Tongji advanced driving simulator.

Fig. 2. Ring shaped highway and segment ID numbers.

• Level 2 (DL = 2): KSS is 7, moderate-level drowsiness;
• Level 3 (DL = 3): KSS range from 8 to 9, high-level drowsiness.

2.3.3. Measurement of the effects of drowsiness
Vehicle-based signals measuring driving behavior, with a 10 Hz

sample frequency, were obtained from the system, including vehi-
cle speed, lateral position and steering wheel angle. Based on
these signals, several drowsiness-related behavior indicators were
extracted. Eye movement signals including eyelid opening and
pupil diameter were also recorded, with a 60 Hz sample frequency.
Using the Smarteye® Pro software, eye blink was identified. Eye
activity indicators including percentage of eye closure (PERCLOS),
average pupil diameter, blink frequency, and average blink duration
were calculated. These measures are summarized in Table 1.

2.3.4. Data analysis
The unit for analysis is each straight line segment mentioned in

Section 2.3.1. Using DL as the dependent variable, and the driving
behavior and eye feature metrics described in Table 1 as the inde-
pendent variables, three models were used: the individual-specific
multilevel ordered logit (MOL) model, and two non-individual-
specific models, an ordered logit (OL) model and an artificial neural
network (ANN) model. In drowsiness detection problem, OL is
the basic statistic model modeling the relationship between dis-
crete dependent variable DL and independent variables. ANN is a
main method to solve classification problem and widely applied
in drowsiness detection problem. However, individual difference
was not considered in the two models. To cover the shortage of
the above models, MOL  was built to detect drowsiness considering
individual specifics.

A feed-forward neural network with five units in one hidden
layer consisting of the interconnection of neurons only between
two adjacent layers was built, and a back propagation training
method was applied using IBM SPSS. Type of training is batch
and optimization algorithm is scaled conjugate gradient. The total

dataset was  divided into training (398 samples) and testing (170
samples) datasets to prevent overfitting. The data in the training
set was  used to build the models, and the data in the validation set
was used to test the models. The stopping criterion is one consec-
utive step with no decrease in error calculated by testing sample.
A hyperbolic tangent function was  used as the activation function
of the hidden layer and a Softmax activation function was  used for
the output layer.

To ensure each of the two data sets contained the data from
every subject at every drowsiness level, the training set was gener-
ated by randomly selecting 70% of the data for each subject at each
drowsiness level, and the rest of the data was assigned to the val-
idation set. The individual specific multilevel ordered logit model
was established first, and then the non-individual specific ordered
logit model and neural network model were constructed using the
same variables as the multilevel ordered logit model.

3. Results

In the MOL  model development, each of the 23 variables was
tested for statistical significance and the nonsignificant variables
were eliminated. Among those studied, five variables were identi-
fied as significant, as judged by 95% credible interval (CI): PERCLOS,
Pupil, Blink duration, SWM  Re, LP stdev. Then, among the signifi-
cant variables, the Pearson correlation coefficients were examined.
Blink durations were highly correlated with PERCLOS, but PERCLOS
is more significantly related to DL. Therefore, in the final model,
Blink duration was also eliminated.

The results of the MOL  model are shown in Table 2. Two  eye
feature metrics, one steering variability metric and one lane vari-
ability metric are used as the explanatory variables in the final
model. Among these explanatory variables, the fixed effects of PER-
CLOS, LP stdev and SWM  Re are positive, while Pupil was  negative.
The threshold �1 is significant (t = −2.255, sig. = 0.025) and �2 is
nonsignificant (t = −0.427, sig. = 0.669). For the random effects of
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Table  1
Driving behavior and eye feature metrics.

Metrics Description of the variables Mean S.D.

Driving behavior
LP stdev Standard deviation of lateral position (m) 0.306 0.134
LP  avg Average of lateral position (m)  0.214 0.269
LD  Areaa Sum of lane departure time-space area (m s) 1.627 4.207
LD  TAreab Sum of lane departure time-space area weighted by lane crossing time (m s) 6.129 35.383
LD  Frequency Lane departure frequency 0.660 1.118
LD  Speed Lane departure lateral speed (m/s) 0.046 0.099
LD  Tc Time percentage of lane crossing of the vehicle center 0.002 0.017
LD Te Time percentage of lane crossing of the vehicle edge 0.021 0.045
SW  Speed stdev Standard deviation of steering angular speed (degree/s) 0.012 0.008
SW  Area MAc Area surrounded by steering angle and its moving average 0.440 0.257
SWM  Re Steering wheel reversals 190.485 29.522
SW  Range 1 Percentage of steering speed in 0–2.5 degree/s 0.876 0.085
SW  Range 2 Percentage of steering speed in 2.5–5 degree/s 0.077 0.037
SW  Range 3 Percentage of steering speed in 5–7.5 degree/s 0.024 0.020
SW  Range 4 Percentage of steering speed in 7.5–10 degree/s 0.010 0.012
SW  Range 5 Percentage of steering speed exceeding 10 degree/s 0.013 0.024
Speed  Average speed (km/h) 117.424 6.650
Speed stdev Standard deviation of speed (km/h) 2.866 2.860
Speeding T Time percentage of speed exceeding the limit speed 120 km/h 0.311 0.372

Eye  features
Blink Frequency Average blink frequency per second 0.504 0.318
Blink  duration Average blink duration (s) 0.402 0.054
PERCLOS Percentage of eyelid closure 0.132 0.099
Pupil Average pupil diameter (mm) 3.807 0.894

a A =
∑n

i=1
Ai, Ai =

∫
di(t)�t. While A is LD Area, and di(t) is the lane crossing distance of ith lane crossing at t moment.

b T =
∑n

i=1
Ti, Ti = ti

∫
di(t)�t. While T is LD TArea, and ti is the lane crossing duration of ith lane crossing.

c M =
∫

|S(t) − SMA(t)|�t. While M is SW Area MA,  S(t) is the steering wheel angle at t moment, SMA(t) is the moving average of steering wheel angle at t moment, and the

relationship between SMA(t) and S(t) is: SMA(0) = S(0), SMA(t + �t) =  ̨ × SMA(t) + (1 − ˛) × S(t + �t). In order to smooth steering wheel angel,  ̨ is 0.95 in this study.

Table 2
MOL  and OL model estimated results.

Parameters Effect estimate t Sig. 95% confidence level

Mean S.D. Lower Upper

MOL
Threshold
�1 −3.778 1.675 −2.255 0.025 −7.070 −0.486
�2 −0.712 1.666 −0.427 0.669 −3.986 2.562
Fixed  effects
PERCLOS 5.226 2.129 2.455 0.014 1.043 9.410
Pupil  −1.780 0.318 −5.60 0.000 −2.403 −1.156
SWM  Re 0.010 0.005 2.182 0.030 0.001 0.020
LP  stdev 5.227 1.007 5.193 0.000 3.249 7.206
Random effects
Between-subject variance 3.496
Within-subject variance 5.195
ICC 0.402

OL
Threshold
�1 −0.545 0.694 −0.786 0.432 −1.907 0.816
�2 1.914 0.698 2.742 0.006 0.544 3.283
Fixed  effects
PERCLOS 9.891 1.441 6.865 0.000 7.063 12.719
Pupil  −1.065 0.121 −8.779 0.000 −1.303 −0.827
SWM  Re 0.011 0.003 3.212 0.001 0.004 0.017
LP  stdev 3.606 0.833 4.329 0.000 1.971 5.240

individual differences, the intra-class correlation coefficient (ICC)
of the data set (training set) is 0.402, which shows a large between-
group heterogeneity and within-group homogeneity. Therefore, it
can be inferred that if an ordered logit model were implemented
without considering the random effects between subjects, the
results may  be biased and inaccurate. It is also implied that the
drowsiness detection algorithm should vary for different subjects.

The results of the OL model using the same explanatory variables
as the MOL  model are also shown in Table 2. All the explanatory
variables are significant at 95% CI, and the coefficient for each vari-
able shows different values but the same sign as those in the MOL

model. The threshold �2 is significant (t = 2.742, sig. = 0.006) and �1
is nonsignificant (t = −0.786, sig. = 0.432).

For ANN model, PERCLOS, and Pupil, SWM  Re were standard-
ized before input into the model. Based on the ANN model, the
importance of each variable was  also calculated. The normalized
importance of each variable is PERCLOS (100%), Pupil (74.5%),
LP stdev (65.2%), and SWM  Re (41.1%), which implies that eye fea-
ture metrics performed better than driving behavior metrics in
drowsiness detection. The receiver operating characteristic (ROC)
curve of ANN was also formed. The area under the ROC curve for
DL = 3 (0.887) is larger than DL = 1 (0.779) and DL = 2 (0.647), which
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Table  3
Models accuracy summary.

Model and dataset Observed Predicted Correct Overall accuracy

1 2 3

MOL
(Train set)

1 67.90% 31.00% 1.20% 67.90%
68.40%2  22.80% 68.90% 8.30% 68.90%

3  1.90% 29.60% 68.50% 68.50%

MOL
(Test set)

1 64.17% 30.28% 5.56% 64.17%
64.15%2  27.13% 63.33% 9.54% 63.33%

3  5.00% 29.68% 65.32% 65.32%

OL
(Train set)

1 59.52% 39.29% 1.19% 59.52%
54.80%2  40.00% 51.67% 8.33% 51.67%

3  3.70% 43.52% 52.78% 52.78%

OL
(Test set)

1 50.00% 50.00% 0.00% 50.00%
52.70%2  30.83% 52.50% 16.67% 52.50%

3  1.19% 42.86% 55.95% 55.95%

ANN
(Train set)

1 54.17% 40.28% 5.56% 54.17%
57.80%2  26.67% 63.33% 10.00% 63.33%

3  9.09% 36.36% 54.55% 54.55%

ANN
(Test set)

1 47.92% 52.08% 0.00% 47.92%
56.04%2  30.00% 65.83% 4.17% 65.83%

3  12.20% 36.59% 51.22% 51.22%

means it was easier to distinguish DL = 3 than DL = 1 or 2 than to
distinguish any other DL from the remaining DLs.

The summary of drowsiness detection accuracy is shown in
Table 3. ANN performed better than the OL model in both the
train set and test set, but for each data set (train set and test set),
the overall accuracy of the MOL  model is the highest among the
three models. For the test set, the detection accuracy of MOL  varies
in a very small range across drowsiness levels (63.33–65.32%),
while the other two models vary greatly (OL: 50.00–55.95%; ANN:
47.92–65.83%). The top three possible detection errors for the three
models were the same, which are mistaking 1 for 2, mistaking 3 for
2 and mistaking 2 for 1. Mistaking 1 for 3 and mistaking 3 for 1 have
the smallest chance of error.

4. Discussion

In order to find out a group of suitable indicators for drowsi-
ness warning, 23 non-intrusive indicators were developed in this
study. Eight metrics are based on lane lateral position, eight on
steering wheel angle, three on vehicle speed and four on eye fea-
tures. The MOL  results indicate that the indicators group formed
by PERCLOS, Pupil, SWM  Re, and LP stdev are appropriate to detect
drowsiness. To test whether the variables selected in the MOL  were
acceptable, all 23 variables were input into an ANN model with 10
neurons in hidden layers. In order of importance, PERCLOS, Pupil,
Blink duration, SWM  Re, and LP Stdev were the most important
predictors of DL. With the exception of Blink duration, which was
eliminated because of the correlation with PERCLOS, these variables
are also significant in the MOL  model.

Identification of the most important variables was vital because
when detecting drowsiness, the input variables selection is an
important consideration. The top three important variables are
all eye feature metrics. These results can be interpreted that eye
feature metrics perform better than driving behavior metrics in
drowsiness detection. The following test also verified this inference.
After removing eye feature metrics, the detection accuracy of the
ANN model for the test set was reduced from 56.0% to 45.8%, while
keeping only eye feature metrics reduced the detection accuracy
to just 49.3%. Because of this, some drowsiness detection stud-
ies have used only eye feature metrics to detect drowsiness (Jo
et al., 2014; Hu and Zheng, 2009). However, the detection accuracy
of the ANN model using both metrics has the highest detection

accuracy, suggesting that use of driving behavior metrics is also
needed. Moreover, the eye features are often measured by camera
and image processing, which may  not be reliable. Use of the driving
behavior metrics can be a supplement to increase the reliability of
the detection system.

Of the driving behavior metrics, both lane related and steering
related metrics are important in the drowsiness detection models.
Among lane related metrics, the lane variability measure (LP stdev)
performed better than other lane departure measures. A possible
reason is that the lane departure metric only measures the fea-
tures of lane departure events, so the lane variability information is
missed for the non-departure parts. SWM  Re is the most important
variable among steering related metrics, which measures steer-
ing variability. Rapid steering wheel movement is suggested as
a drowsiness measurement (Sandberg and Wahde, 2008). In this
study, however, where it is measured by SWM  Rang 5, it is not
significant in the MOL  model. Some studies (Forsman et al., 2013)
also conclude that lane variability is highly correlated with steering
variability; but we calculated the Pearson correlation of SWM  Re
and LP stdev at 0.089 (sig. = 0.059), which indicates the correlation
between these variables is small.

Previous research finds there might be a curvilinear relationship
between KSS and drowsiness metrics (Ingre et al., 2006a), with a
stronger change at high KSS levels when compared with low KSS
levels. In this study, among the four significant variables in the MOL
model, the mean change between DL 3 and DL 2 is larger than that
between DL 2 and DL 1 (see Fig. 3). PERCLOS is a typical example
of this change, by which it can be inferred that PERCLOS is sensi-
tive to a high drowsiness level. This figure also might explain why
PERCLOS is the variable with the highest importance in the ANN
model. Due to the larger change of metrics on higher DLs, it can be
inferred that higher drowsiness can be more easily detected, which
is also verified by the detection accuracy of the MOL  and OL models.
Therefore, the correct detection rate for DL = 3 is the highest.

In this study, the OL model can be considered as the basic model,
while the MOL  and ANN models can be viewed as two  improve-
ments on the OL model. The MOL  model’s improvement is in
considering individual differences, while the ANN’s improvement
is in ensuring higher adaptability for the data. The results show
MOL has the highest detection accuracy among the three mod-
els, which can be attributed to using a series of individual specific
thresholds, achieved by adding a random intercept in the subject
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Fig. 3. Boxplot of four important variables.

level of MOL. That is, the improvement by using an individual spe-
cific logit model is larger than by using a more complex algorithm
with higher flexibility. However, in MOL, this random intercept for
each driver is hard to predict. It can be decided only by a procedure
such as training. Driving experience, age, and other characteristic
variables of the driver were analyzed as explanations of individual
differences, but no strong results were found. Yet the individual
difference is still the main obstacle to increasing the drowsiness
detection accuracy.

Some research that has classified drowsiness in only two levels
(alert or drowsy) has achieved high detection accuracy. But two
levels of drowsiness are not enough to support warning the driver
before the crash risk becomes critical. Therefore, three levels of
drowsiness were used in this study. However, this study confirms
that the detection accuracy is highly related with lower numbers of
drowsiness levels. If we used two levels of drowsiness (Level 1: KSS
1–7; Level 2: 8–9), the detection accuracy increases from 64.15% to
88.6% for the MOL  model with the same variables, and the detection
accuracy increases from 56.04 to 83.3% for ANN. It can be inferred
that the more drowsiness levels to be classified, the lower detection
accuracy we would get in the models. Therefore, when comparing
the detection accuracy among detection models, the way to classify
drowsiness levels should also be considered.

5. Conclusion and recommendations

Twenty-three non-intrusive metrics including driving behavior
and eye feature metrics were evaluated in a simulated shift-work
study with a motion-based high-fidelity driving simulator in a con-
trolled laboratory environment. Based on these metrics, an MOL

was developed to detect three levels of drowsiness. For compar-
ison, two  non-individual specific models, OL and ANN, were also
established.

The MOL  has the highest detection accuracy. This may  be
attributed to using a series of individual specific criteria, which
was achieved by adding a random intercept at the subject level.
Among the 23 variables, PERCLOS, Pupil, LP stdev and SWM  Re
were significant in MOL  and OL, and were also confirmed in ANN.
Metrics of eye features performed better (showed higher impor-
tance) in the drowsiness detection models than other metrics,
which was  also verified using ANN by comparing the detection
accuracy between eye features only and driving behaviors only. We
also found higher DLs are more easily detected because of higher
heterogeneity between adjacent DLs.

Based on this analysis, employing a user-specific method to
detect driver drowsiness is recommended in order to address
the inaccuracies caused by individual differences. In this study,
group characteristics (such as age and gender) of participants
were controlled. However, if it can be demonstrated that group
characteristics exist, we can build group-specific models that
would simplify the model training process by group determinants.
Therefore group characteristics are recommended for study. Also,
because establishment of drowsiness level in this research was sub-
jective, more accurate measures should be applied, for example,
using EEG to determine drowsiness level.
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Appendix 1. Multilevel ordered logit model

Multilevel ordered logit models are often presented as cumula-
tive logit models. Suppose an ordered DLij is the drowsiness level
for ith subject on the jth road segment. A latent continuous variable
DL∗

ij is established as the unobserved measure of DLij. DL∗
ij is related

to DLij by a series of latent thresholds. Differing from the ordered
logit model, the multilevel model accounts for each subject’s indi-
vidual performance by using a set of variable thresholds specific to
each subject: �ki

(k = 1, 2), see Eq. (2).

DLij =

⎧⎪⎨
⎪⎩

1 if DL∗
ij

< �1i

2 if �1i
< DL∗

ij < �1i

3 if �2i
< DL∗

ij

(1)

The DL∗
ij can be written in the same form as the regular linear

regression model.

DL∗
ij = �ij + εij and �ij +

p∑
p=1

ˇpxpij
(2)

where xpij
is the explanatory variable for ith subject on jth seg-

ment. εij is the disturbance term, which is assumed as a logistic
distribution as the cumulative density function. Thus, the cumu-
lative response probabilities of the ordinal DL may  be denoted as:

Pij(k) = Pr(DL∗
ij ≤ k) = F(�ki − �ij) =

exp(�ki
− �ij)

1 + exp(�ki
− �ij)

, k = 1, 2

(3)

Logit(Pij(k)) = log

[
Pij(k)

1 − Pij(k)

]
= log

[
Pr(DL∗

ij ≤ k)

Pr(DL∗
ij ≥ k)

]

= �ki
− �ij, k = 1, 2 (4)

In order to accommodate differences among subjects, the thresh-
olds �ki were specified as random effects.

�ki
= �k + bi, k = 1, 2 (5)

where the intercept �k represents a constant component for thresh-
olds for all subjects. A random effect component bi is formulated to
accommodate the between-subject heterogeneities.

An intra-class correlation coefficient (ICC) is normally defined
to examine the proportion of specific subject-level variance:

ICC = �2
B

�2
b

+ �2
w

(6)

where �2
w is within group variance and �2

b
is between group vari-

ance. A value of ICC close to zero indicates there is a very small
variation between the different subjects, and a model without mul-
tilevel structure is adequate for the data. Otherwise, a multilevel
model would be preferred.

Appendix 2. Artificial neural network model

The artificial neural networks (ANNs), a popular class of compu-
tational intelligence models, has been widely applied to drowsiness
detection, partly because of its ability to work with massive
amounts of multi-dimensional data, its modeling flexibility, and
its generally good predictive ability.

In this study, we built a feed-forward neural network with one
hidden layer consisting of the interconnection of neurons only
between two  adjacent layers. A back propagation training method
was used. Before modeling, the following standardization proce-
dure was  carried out for each metric:

xi = xi − xmin

xmax − xmin
(7)

A basic computational element is called a node. Each node
receives input from an external source or from other nodes. Each
input has an associated weight (wij), which can be modified to
model synaptic learning by the process of training. The input of
the jth node in the hidden layer is calculated as follows:

Zj =
∑

i

wij(xi + bj) i = 1, 2, . . .,  N j = 1, 2, . . ., M (8)

where Zj is the input to jth node in the hidden layer, wij is the weight
of ith node in the input layer to jth node in the hidden layer, xj is the
value of ith node in the input layer, bj is bias value for the jth node
in the hidden layer, N is the number of nodes in the input layer, and
M is the number of nodes in the hidden layer.

The output of a node is decided by its input as well as the
activation function. Different activation functions such as sigmoid
functions, hyperbolic tangent functions, and logistic functions can
be used. A hyperbolic tangent function was used as the activa-
tion function of the hidden layer in our study. It was calculated
as follows:

Hj = f (Zj) = tanh(Zj) =
e2z

j
− 1

e2z
j

− 1
(9)

where Hj is the output of jth node in hidden layer.
In our study, we want the outputs of ANN to be interpretable as

probabilities for a categorical target variable (DL), for those outputs
to lie between 0 and 1, and to have a sum of 1. Therefore, a Softmax
activation function is used for the output layer, which is written as
follows:

Ok = exp(Zk)∑c
m=1 exp(Zm)

(10)

where Ok is the output of kth node in the output layer, c is the
number of categories for the target variable.

In the training process, the network output, in general, may  not
be equal to the desired output. Therefore, the output error is calcu-
lated as the difference between the network output and the desired
output. If the output error does not satisfy the tolerance level, the
network modifies the connection weights (wij) according to the
value of the output error; then, training data is inputted again to the
network and the network output is calculated. The training cycle is
continued until the network achieves the desired tolerance level.
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