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vitally important in transportation planning and have been emphasized
in several macro-level studies during the past few years. Macro-level
analyses of crash prediction models have been attempted for census
block groups; traffic analysis zones (TAZs); census tracts; and
counties considering various demographic, socioeconomic, road,
and travel characteristics (1–6).

The study in this paper was based on 1,349 TAZs of four counties
in the state of Florida. This study aims to propose several safety
management alternatives for the TAZs by investigating the associ-
ation between crash frequencies and various types of trip productions
and attractions in combination with the road characteristics of the
TAZs. In addition, at the transportation planning stage if TAZs are
to be defined on the basis of travel demand models, the results of this
study point to different approaches when predicting crashes at the
zonal level. It is speculated that using trip types to predict crash
frequencies will help in understanding the safety consequences at an
early stage of transportation planning.

The study examined four response variables: total crashes, severe
(fatal and severe injury) crashes, peak-hour crashes, and pedestrian-
and bicycle-related crashes per TAZ. Peak periods were estimated
on the basis of temporal variations of the aggregated hourly crash
frequencies and their association with different trip- and road-related
covariates. Also, as both state and nonstate road characteristics within
a TAZ were considered in the study, pedestrian- and bicycle-related
crashes were of special interest as most of these categories of crashes
occur on moderate- to low-speed roadways and streets.

LITERATURE REVIEW

Macro-level crashes have been investigated at various spatial aggrega-
tions. The crash models developed in these studies have incorporated
different categories of variables in predicting crash occurrences.
Amoros and Laumon (1) compared traffic safety in several counties
in France taking different road types and socioeconomic characteris-
tics into account. Aguero-Valverde and Jovanis (2) investigated crash
risk for Pennsylvania counties with respect to sociodemographics,
weather conditions, transportation infrastructure, and amount of
travel. Noland and Oh (3) examined the association of various road
network infrastructure and some demographic and socioeconomic
variables with crashes in the counties of Illinois. Amoros and Laumon
(1) found significant interaction between county and road type.
Other positively associated road-related significant factors in the
above-mentioned studies included road mileage and road density (2)
and number of lanes (3). Among demographic variables, Aguero-
Valverde and Jovanis (2) found that counties with a higher percentage
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A transportation network is a conglomeration of road–traffic–environment
modules and features multicategories of interdependent factors. This
mix makes the management of safety in traffic analysis zones (TAZs)
explicitly challenging. This study investigated the association between
crash frequencies and various types of trip productions and attractions
in combination with the road characteristics of 1,349 TAZs of four coun-
ties in the state of Florida. Crash safety management of these TAZs is
emphasized through prioritizing them by examining the effects of trip
and roadway factors on the aggregated crash frequencies. Models were
developed separately for total crashes, severe crashes (fatal and severe
injury crashes), total crashes during peak hours, and pedestrian- and
bicycle-related crashes on the basis of various groups of estimators. It
was found that the total crash model and the peak-hour crash model
were best estimated by total trip productions and total trip attractions.
The severe crash model was best fit by trip-related variables only, and the
pedestrian- and bicycle-related crash model was best fit by road-related
variables only. The results from this study pave the way for better
safety management and the incorporation of safety measures in travel
and network planning.

The nature and extent of roadway safety vary widely depending on
roadway type and facility, driver characteristics, land use pattern,
and various other factors. Considerable research has been conducted
to reduce the occurrence of crashes that take millions of lives and
cause immeasurable human suffering each year throughout the
world. As a crash is associated with a complex interaction of various
factors, micro-level crash analysis (e.g., road-specific crash analy-
sis, crash-specific safety analysis, event-specific analysis) can lead
to better insight about factors that contribute to crashes. Also, by
knowing the factors associated with crash occurrence one can enhance
safety-conscious transportation planning and management.

A transportation network is a conglomeration of various sets of
road–traffic–environment modules and features by multicategories
of interdependent factors. This imposes a challenge in macro-level
and aggregate analyses of crashes. Aggregate level considerations are
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of the population below the poverty level and a higher percentage of
the population in the age groups 0 to 14, 15 to 24, and over 64 years
have significantly increased crash risk. Huang et al. (7 ) concluded that
the safety status is worse for areas with lower income and educational
levels and a higher unemployment rate compared with relatively
affluent areas. Also, counties with higher traffic intensity and popu-
lation density and a greater degree of urbanization are associated
with higher crash risks (7). Noland and Oh (3) commented that their
analysis results did not change much when demographic variables
were included, although they found that these variables appear to
capture the residual time trend associated with reductions in fatalities
and reported crashes.

Crash prediction studies at the county level have been thought
to suffer from the problem of spatial heterogeneity. Karlaftis and
Tarko (5) used a stratification scheme to solve this problem to some
extent. They used clustering techniques to generate homogeneous
groups with similar socioeconomic, traffic, and infrastructure char-
acteristics for the counties of Indiana. Their results showed that
models developed for homogeneous clusters of counties were more
efficient than the joint models, thus indicating the importance of
spatial homogeneity.

Wier et al. (6) looked at vehicle–pedestrian injury collisions 
at 176 San Francisco, California, census tracts, which are spatially
disaggregated from the counties. The predictor variables examined
in their study included street, land use, and population characteristics
and their final model was able to explain about 72% of the systematic
variation of the vehicle–pedestrian injury collisions at the census
tract level. It was evident from their study that traffic volume was the
primary cause of vehicle–pedestrian injury collisions at the area level.
Additionally, employee and resident populations, arterial streets
without public transit, the proportion of people living in poverty,
and the proportion of people age 65 or older were among the other
statistically significant predictors.

Noland and Quddus (4) analyzed ward-level crash data for England
using land use types, road characteristics, and demographic data.
Their findings suggested that areas with high employment density
had more traffic casualties, more densely populated urbanized areas
were associated with fewer casualties, and road length had a positive
association with serious injuries. Levine et al. (8) examined the
zonal relationship between motor vehicle crashes and population,
employment, and road characteristics using census block group as
the unit of analysis. Their analysis revealed that increased population
and miles of major arterials were associated with an increased number
of crashes per census block group.

The spatial error resulting from the heterogeneity of spatial aggre-
gation motivated the investigation of macro-level crash analysis
at relatively homogeneous zones. It can be argued that the census
block, which is the basic zonal unit of the census geography hierarchy
in the United States, will have the least amount of spatial hetero-
geneity. This paper uses TAZ level aggregation to perform the
analyses. A TAZ is a spatial aggregation of census blocks and is in
part a function of population (9). TAZs are thought to have better
homogeneity than census blocks as they are special areas delineated
by state or local transportation officials particularly for tabulating
traffic-related data and are defined as part of the census transportation
planning package (10).

As cited by You et al. (11), the most important criteria used to
define TAZs include spatial contiguity, homogeneity, and compact-
ness. Also, TAZs have commonly been considered as a basis for the
aggregate modeling process (12). Hadayeghi et al. (13) studied total
and severe crashes at 463 TAZs in the city of Toronto, Ontario,
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Canada, as a function of socioeconomic and demographic, traffic
demand, and network data variables. De Guevara et al. (14) developed
planning-level crash prediction models for 859 TAZs in Tucson,
Arizona, considering demographic, socioeconomic, and roadway
characteristics as the predictors.

In this study, safety management of TAZs is emphasized through
prioritizing them by examining the effects of various trip and road-
way factors on the aggregated crash frequencies at the TAZ level.
Also, it is speculated that predicting crash frequencies by using trip
types will help in incorporating the safety perspectives during the
transportation planning stages as trip types are vitally important
in the travel demand modeling process. The modifications of TAZs
in Texas are considered during each travel model update when a
new base year is established (15). Also, travel demand models are
used in Florida and around the country to forecast traffic volumes
on highways (16).

DATA PREPARATION

The study was based on the following four counties of the state of
Florida: Citrus, Hernando, Pasco, and Hillsborough. These four
counties constitute a total of 1,349 TAZs representing both rural and
urban areas. Crash data for the years 2005 and 2006 were used in the
study. The geographic information system (GIS) shape files (maps)
providing crashes as point entities were collected from the Florida
Department of Transportation (DOT). Each point (a crash) in the
GIS shape file provided several attributes for the corresponding crash.
The roadway characteristics were found from separate GIS shape files
provided by Florida DOT. These GIS shape files included roadway
segments as line entities. The geographic maps for the study counties
were collected from the Florida DOT District 7 Intermodal Systems
Development Unit. Each map provided cartographic boundaries of the
TAZs within a county. The base spatial unit of the study was TAZ, and
the following steps were taken to aggregate variables at the TAZ level:

• The spatial join tool in ArcMap 9.2 (Environmental Systems
Research Institute, Inc., Redlands, Calif., 2007) was used to assign
crashes to TAZs by joining two GIS shape files: crash map and TAZ
cartographic boundary map. It was ensured that both maps had
similar GIS coordinate systems.

• The streets were similarly spatially attached to the respective
TAZs.

• The spatial join procedure allowed each point (a crash) or line
(a roadway segment) feature in the GIS shape files to assign the TAZ
identification to which the feature was geographically located.

• The next step was to aggregate crash and roadway attributes at
the TAZ level. The attributes tables were exported from ArcMap,
and the aggregation was performed with SAS statistical software
(Version 9.1.3, Service Pack 3, SAS Institute Inc., Cary, N.C., 2009).

• Therefore, the data set contained all crash and roadway vari-
ables aggregated to a TAZ, which was treated as one observation of
the data set.

The number of trip attractions and productions per day per TAZ
for 13 categories was collected from the Intermodal Systems Devel-
opment Unit of District 7 of the Florida DOT. The final data set con-
tained three main categories of variables: crash-related variables,
variables pertaining to roadways, and different trip attraction and
production rates per TAZ. The complete list and descriptive statistics
of responses and predictors are provided in Table 1.
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TABLE 1 Description of Variables

Variable Name Definition N Mean Standard Deviation Min. Max.

TAZ2004 Traffic analysis zone (in year 2004) 1,349 NA NA NA NA

Crash Severity

FATAL Fatal crashes 1,349 0.46 0.849 0 8

SVINJ Severe injury 1,349 5.07 5.885 0 45

INJ Injury crashes 1,344 21.13 22.880 0 173

PDO Property-damage-only crashes 1,344 29.74 38.282 0 310

Response Variables (per TAZ in years 2005–2006)

Crash_freq Total number of crashes 1,349 56.20 64.048 0 481

Severe_crashes Total number of fatal and severe injury crashes 1,349 5.52 6.278 0 47

Peak_crash_freq Total number of crashes during peak hours 1,217 13.91 14.714 1 110

Ped_bike_crashes Total number of pedestrian- and bicycle-related crashes 1,349 2.6 4.164 0 50

Independent Variables Related to Roadway Characteristics (total roadway segment length within a TAZ with a posted speed limit)

seglen15 15 mph 1,349 0.22 0.434 0 4.063

seglen25 25 mph 1,349 8.27 11.729 0 244.595

seglen35 35 mph 1,349 1.40 1.749 0 24.934

seglen45 45 mph 1,349 0.11 0.422 0 6.709

seglen55 55 mph 1,349 0.13 0.621 0 11.248

seglen65 65 mph 1,349 0.22 0.711 0 10.221

SUM_SEG_LEN All roads 1,349 10.76 14.050 0 265

Intersection Total number of intersections per TAZ 1,349 12.32 12.055 1 119

Independent Variables Related to Various Trip Productions and Attractions

HBWP Home-based work productions 1,349 864.44 940.174 0 8,056

HBWA Home-based work attractions 1,349 852.97 1,262.400 0 17,788

HBSHP Home-based shop productions 1,349 889.98 929.371 0 7,363

HBSHA Home-based shop attractions 1,349 851.82 1,402.270 0 15,842

HBSRP Home-based social recreational productions 1,349 422.59 436.225 0 3,173

HBSRA Home-based social recreational attractions 1,349 400.12 649.275 0 8,127

HBSCP Home-based school productions 1,349 247.14 286.247 0 2,965

HBSCA Home-based school attractions 1,349 246.75 684.592 0 6,832

HBOP Home-based other productions 1,349 587.35 614.641 0 4,533

HBOA Home-based other attractions 1,349 556.74 795.465 0 7,992

NHBWP Non-home-based work productions 1,349 215.03 299.583 0 3,606

NHBWA Non-home-based work attractions 1,349 215.03 299.583 0 3,606

NHBOP Non-home-based other productions 1,349 575.41 860.352 0 10,144

NHBOA Non-home-based other attractions 1,349 575.41 860.352 0 10,144

LTRKP Light-truck productions 1,349 268.62 231.951 0 2,264

LTRKA Light-truck attractions 1,349 268.62 231.951 0 2,264

HTRKP Heavy-truck productions 1,349 68.76 102.811 0 1,591

HTRKA Heavy-truck attractions 1,349 68.76 102.811 0 1,591

TAXIP Taxi productions 1,349 20.26 21.849 0 323

TAXIA Taxi attractions 1,349 20.26 21.849 0 323

EIP External–internal productions 1,349 0 0 0 0

EIA External–internal attractions 1,349 40.21 56.448 0 647

AIRPP Airport productions 1,349 12.58 34.145 0 540

AIRPA Airport attractions 1,349 0 0 0 0

COLP College productions 1,349 79.64 161.303 0 3,234

COLA College attractions 1,349 38.40 341.085 0 5,069

TOTALP Total productions 1,349 4,251.79 3,720.230 0 26,741

TOTALA Total attractions 1,349 4,135.09 5,105.610 0 48,033

logtp Natural log of TOTALP 1,330 7.86 1.274 0 10.19

logta Natural log of TOTALA 1,328 7.50 1.642 0 10.78

NOTE: NA = not applicable.



METHODOLOGY

Crash frequencies are non-negative integers, which are not normally
distributed. It has been widely accepted that a Poisson or negative
binomial (NB) model has the ability to estimate the relationships
between the number of crashes and covariates. The underlying
assumption of the Poisson distribution of variance equal to the mean
is often violated in the crash count data. Most of the time, crash
observations have a greater variance than their mean and therefore
the data are overdispersed. NB models take this overdispersion into
account. The NB distribution is characterized by the following
mean–variance relationship of a practical observation, Y:

where µ = E(Y) (expectation of Y) and α is the overdispersion param-
eter. The presence of overdispersion is adjusted by the log-linear
relationship between the expected number of crash counts in an
observation unit i, µi, and the covariates Xi (4).

where β is the estimated coefficient vector and � is the random error
term representing the effect of omitted unobserved variables. NB
has the following general form of probability mass function.
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where Γ (.) = gamma function and α > 0. Poisson regression is a
limiting condition of NB regression while α → 0. Wide application
of NB regression models as found in the road safety literature 
(4, 13, 14, 17–22) implies acceptable practice in modeling crash
frequencies and therefore is thought to be appropriate to use in
this study.

DISCUSSION AND RESULTS 
FROM MODEL ESTIMATES

Each model was estimated separately for various trip generations
(productions and attractions), roadway characteristics, and consid-
ering the combined effect of trip- and road-related variables. The
variables that were statistically significant at the 95% confidence
level were retained in the models. The following response variables
were considered: total number of crashes (Model A), severe (fatal and
severe injury) crashes (Model B), total peak-hour crashes (Model C),
and pedestrian- and bicycle-related crashes (Model D). As in the
study by Wang and Abdel-Aty (23) and the temporal variations of
the aggregated hourly crash frequencies on weekdays, peak hours
were defined as 7:00 to 9:00 a.m. and 3:30 to 6:30 p.m.

The NB model estimates for four categories of crashes that consider
trip-related predictors only are presented in Table 2. To capture
the combined effects of various trip productions and trip attractions
per TAZ, models were estimated with only two variables: natural
logarithmic transformation of total trip productions and total trip
attractions per TAZ. The transformations were applied to minimize
heteroskedasticity in the data. Table 3 provides different model esti-
mates and goodness of fit for the four developed models considering

TABLE 2 NB Models of Total Crashes, Severe Crashes, Peak-Hour Crashes, and Pedestrian- and Bicycle-Related Crashes 
with Trip-Related Predictors Only

Peak-Hour Crash Pedestrian- and Bicycle-
Total Crash (Model A) Severe Crash (Model B) (Model C) Related Crash (Model D)

Variable Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 3.3661 0.0466 1.1714 0.0462 2.0335 0.0436 0.1118 0.0709

HBWA −0.0005 0.0001 −0.0004 0.0001 −0.0005 0.0001 −0.0004 0.0001

HBWP 0.0004 0.0001

HBSHA 0.0001 0 0.0001 0 0.0006 0.0001

HBSRA −0.0009 0.0002

HBSRP −0.0078 0.0012 −0.0064 0.0009 −0.0122 0.0016

HBSCP 0.0008 0.0002

HBOA −0.0003 0.0001

HBOP 0.005 0.0009 0.0044 0.0007 0.0084 0.0012

LTRKP 0.002 0.0008 0.0022 0.0002 0.0032 0.001

HTRKP −0.001 0.0004 −0.0011 0.0004 −0.0026 0.0009

EIA 0.0091 0.0032 0.0054 0.0025 0.0137 0.0019

AIRPP 0.011 0.0016 0.0069 0.0013 0.0158 0.0022

COLP 0.0005 0.0002 0.0009 0.0004

NHBWP 0.0008 0.0002

α 0.9608 0.8646 0.6634 1.5448

logL (intercept model) 265,585.71 7,497.97 33,239.06 1,499.53

logL (full model) 265,748.88 7,603.84 33,402.56 1,627.37

Deviance value/DF 1.164 1.1366 1.0738 1.03

Pearson chi-square value/DF 1.211 1.0962 1.2167 1.0123

NOTE: SE = standard error; logL = log likelihood; DF = degree of freedom.



total trip production and attractions. Table 4 presents estimates of
crash models with road-related predictors only. Finally, models
estimated considering all variables (both trip and road related) are
presented in Table 5.

Total Crash Model

Model A retained 10 independent variables while assessing the asso-
ciation with trip-related variables only (Table 2). No non-home-
based trips were found significant at the 95% confidence level.
The total-crash-trip-only model (Table 2) showed a negative associ-
ation with home-based work attractions, home-based social recre-
ational productions, and heavy-truck productions. Drivers often
travel with their families and children in social recreational trips and
are usually more careful in such conditions. For home-based work
attractions, travelers may drive more cautiously.

The second model for total crashes was developed using total
trip productions and total trip attractions only (Table 3). This model
provided a better model fit than the first model on the basis of log
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likelihood and deviance value per degree of freedom (DF). As
mentioned previously, logarithmic transformation of total trip pro-
ductions and attractions was used. Both covariates were positively
associated with the number of total crashes per TAZ. As the number
of trips (attractions and productions) increases, exposure of traffic
is thought to increase, and high exposure tends to increase the total
number of crashes. Hadayeghi et al. (13) found a similar association
between vehicle kilometers traveled and total crashes per TAZ in the
city of Toronto. Also, a positive estimate for vehicle miles traveled
was found by Karlaftis and Tarko (5) while investigating significant
variables for crashes involving aged drivers in counties of Indiana.

The third model was developed considering road-related predictors
only (Table 4). Five variables were found to be significant, among
which the sum of roadway segment lengths with a 25-mph posted
speed limit was found to be negatively associated with total crashes.
On the contrary, the total segment length with higher posted speed
limits (35, 45, and 65 mph) and total number of intersections per
TAZ were found to be positively associated with total crashes.
The association between higher speed and crash propensity has been
well recognized in road safety studies (24–26). Intersections can

TABLE 3 NB Models of Total Crashes, Severe Crashes, Peak-Hour Crashes, and Pedestrian- and Bicycle-Related Crashes 
with Total Trip Production and Attractions

Peak-Hour Crash Pedestrian- and Bicycle- 
Total Crash (Model A) Severe Crash (Model B) (Model C) Related Crash (Model D)

Variable Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 1.4541 0.1607 −0.9455 0.1903 0.2019 0.1747 −3.7349 0.323

logtp 0.1035 0.0335 0.2196 0.0351 0.1161 0.0329 0.4131 0.054

logta 0.2218 0.0257 0.1135 0.0278 0.1863 0.0256 0.1661 0.0408

α 0.963 0.8577 0.7258 1.5825

logL (intercept model) 265,585.71 7,497.97 33,239.06 1,499.53

logL (full model) 264,869.66 7,616.1565 33,276.37 1,627.2998

Deviance value/DF 1.1542 1.134 1.0815 1.0305

Pearson chi-square value/DF 1.3745 1.0616 1.4075 1.1639

TABLE 4 NB Models of Total Crashes, Severe Crashes, Peak-Hour Crashes, and Pedestrian- and Bicycle-Related Crashes 
with Road-Related Predictors Only

Peak-Hour Crash Pedestrian- and Bicycle- 
Total Crash (Model A) Severe Crash (Model B) (Model C) Related Crash (Model D)

Variable Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 3.2512 0.0496 0.9522 0.0507 2.0908 0.0464 0.33 0.0729

seglen25 −0.0112 0.0025 −0.0082 0.0021

seglen35 0.0539 0.0241 0.1205 0.0219 −0.0598 0.0297

seglen45 0.2956 0.0824 0.2527 0.0704 0.1394 0.0702

seglen55 0.1019 0.0435

seglen65 0.2852 0.0496 0.2386 0.044 0.1817 0.0455

Intersection 0.0452 0.0031 0.0304 0.003 0.036 0.0027 0.048 0.0044

α 0.9399 0.8021 0.7193 1.8179

logL (intercept model) 265,585.71 7,497.97 33,239.06 1,499.53

logL (full model) 265,765.97 7,646.6 33,355.04 1,567.3662

Deviance value/DF 1.1574 1.128 1.0745 1.0181

Pearson chi-square value/DF 1.0263 1.0787 1.1575 1.0748



also experience an increase in certain types of crashes, particularly
rear-end crashes. In general, crashes may increase at intersections
because of complicated maneuvers, and therefore a higher number of
intersections within a TAZ could lead to an increase in total crashes.
Finally, total crashes were tested for all variables (both trip- and road-
related predictors) and model estimates are provided in Table 5.
Among the seven significant variables, five belonged to roadway
characteristics; the remaining two were log of total trip productions
and log of total trip attractions. Interestingly, the five significant road-
way variables were the same as in the third model (Table 4), which
was developed for the road-related predictors only, and the direction
of their respective estimates was the same in both models. Log of
total trip productions and log of total trip attractions were positively
associated with the total number of crashes per TAZ. This result con-
forms to the trip effects as exposure measures from the standpoint
that one extra trip will generate an additional count in traffic volume.

On the basis of log likelihood, deviance value per DF, Pearson
chi-square value per DF, and model parsimony, the total crash
model was found to be best fit by total trip productions and total trip
attractions (Table 3).

Severe Crash Model

Model B was developed considering severe crashes (fatal and
severe injury crashes) as the response variable. The trip-only model
(Table 2) for severe crashes retained five significant variables,
among which home-based work attractions and heavy-truck pro-
ductions were negatively associated with the increase in severe
crashes. Most of the work-related trips are made during peak hours,
which are usually congested and thus speeds are relatively low
compared with off-peak hours. This possibly lowers the severity
of crashes. Heavy-vehicle drivers are usually skilled drivers and
are professionally trained to cope with unexpected situations in
the road–traffic environment, which may help explain the decreasing
the number of severe crashes.
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Total trip production and attraction models for severe crashes
(Table 3) provided almost similar goodness of fits compared with
the trip-only model (Table 2). The log likelihood, deviance value per
DF, and Pearson chi-square value per DF for the total trip severe crash
model (Table 3) were slightly greater than those for the trip-only
model for severe crashes (Table 2).

The severe crash model with the road-related predictors (Table 4)
had five significant variables at the 95% confidence level. The sum of
roadway lengths with 35-, 45-, 55-, and 65-mph speed limits were
positively associated with severe crashes. This is theoretically accept-
able as higher speeds tend to be associated with more severe crashes
as previously mentioned. The severe crash model using all predictors
(road- and trip-related variables; Table 5) retained eight significant
variables, of which only the sum of the roadway lengths with a 25-mph
speed limit had a negative estimate. This means that the increase in
roadways with a 25-mph posted speed would reduce the number of
severe crashes within a TAZ. This is easily explained because severe
crashes are less likely to occur at reduced speeds. Among the four mod-
els discussed in this section, it was found that the severe crash model
was best described by trip-related variables only (Table 2).

Peak-Hour Crash Model

The peak-hour crash model (Model C) presented in Table 2 revealed
that home-based work attraction and home-based social recreational
productions and attractions had negative estimates. The possible
effects of home-based work attractions and home-based social
recreational productions have been previously explained. The co-
efficient for the home-based work productions, external–internal
attractions, and airport productions were positive and significant.
Perhaps a desire to reach the destination quickly generates such
positive correlations. Airport trips could also be related to nonfamiliar
travelers (rental cars). Home-based other trip attractions and pro-
ductions were retained in the model with opposite signs in their
estimates. An explanation for such cases is difficult at the macro-level

TABLE 5 NB Models of Total Crashes, Severe Crashes, Peak-Hour Crashes, and Pedestrian- and Bicycle-Related Crashes 
with All Predictors

Peak-Hour Crash Pedestrian- and Bicycle-
Total Crash (Model A) Severe Crash (Model B) (Model C) Related Crash (Model D)

Variable Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 0.9755 0.1476 −1.3272 0.1881 −0.099 0.169 −3.672 0.314

seglen25 −0.014 0.002 −0.011 0.0026 −0.0112 0.0019

seglen35 0.0599 0.0212 0.1381 0.0217 0.1762 0.0654 −0.1124 0.0257

seglen45 0.3408 0.0755 0.3093 0.0644

seglen55 0.1722 0.0432

seglen65 0.3413 0.046 0.2616 0.0402 0.2171 0.042

Intersection 0.0336 0.0029 0.0191 0.0028 0.0279 0.0025 0.0365 0.004

logtp 0.125 0.0296 0.224 0.0341 0.144 0.0317 0.421 0.0522

logta 0.1815 0.023 0.0867 0.0257 0.1436 0.0242 0.1012 0.0393

α 0.7651 0.6582 0.6105 1.4044

logL (intercept model) 265,585.71 7,497.97 33,239.06 1,499.53

logL (full model) 265,040.86 7,746.89 33,379.04 1,673.87

Deviance value/DF 1.1406 1.1309 1.0697 1.0309

Pearson chi-square value/DF 1.2615 1.045 1.3443 1.0729



crash analysis. For the combined model (Table 5) of peak-hour
crashes, six variables were found significant at the 95% confidence
level, among which only the sum of roadway lengths with a 25-mph
posted speed limit had a negative estimate. Similar to Model B, the
sum of roadway lengths with posted speed limits of 35 and 65 mph
were positively associated with peak-hour crashes. The peak-hour
crash model with road-related predictors (Table 4) also had the sum
of roadway lengths with a 25-mph posted speed limit estimate
negatively associated with the peak-hour crash frequency. The other
three significant variables of the road-only model were the sum of
roadway lengths with 45- and 65-mph posted speed limits and 
the total number of intersections per TAZ, all with positive signs.
The hasty attitude of commuters to avoid peak-hour congestion or
to reach home or work places early or on time is an inherent charac-
teristic of peak-hour driving. This may increase crashes at or near
intersections and on high-speed (e.g., ≥45 mph) roads. On the basis
of goodness-of-fit for the full model, it was suggested that peak-hour
crashes were best described with total trip productions and total trip
attractions (as in Table 3).

Pedestrian- and Bicycle-Related Crash Model

Pedestrian- and bicycle-related crash models (Model D) developed
considering trip-related variables only (Table 2) provided goodness of
fits similar to those for Model D in Table 3 (i.e., total trip productions
and attractions model). Only two independent variables—total road-
way segment lengths with 35-mph speed limit and total number
of intersections per TAZ—were significant in the pedestrian and
bicycle crash model developed for road predictors only (Table 4).
The total roadway segment length with a 35-mph speed limit was
negatively associated, whereas the estimate of total number of inter-
sections per TAZ was positive and the highest among the four models
(Table 4), which indicates that pedestrians and bicyclists tend to be
more involved in crashes at or near intersections. The combined effect
model (Table 5) for pedestrian- and bicycle-related crashes had
three significant positive predictors—log of total trip productions, log
of total trip attractions, and number of intersections per TAZ—while
the total roadway length with a 35-mph speed limit was negatively
associated with pedestrian- and bicycle-related crashes as in Table 4.
Assessing the goodness-of-fit statistics showed that the pedestrian- and
bicycle-related crash model was best fit by the road-related predictors
only (Table 4).

MANAGING TRAFFIC ANALYSIS ZONE SAFETY

Because of resource constraints in the transportation industry, there
is always a need to prioritize hazardous sites or locations for safety
treatments. A similar concept can be applied for TAZs. Thus, this
study investigates a way to prioritize TAZs for safety management.

A traditional way is to look at the frequencies of these crashes in
different TAZs. As TAZs vary widely in size, normalizing each of
these crashes per mile of road would provide a standardized risk
among the study TAZs. Figure 1 shows the frequency of severe
crashes per mile of road at different TAZs. This map can easily be
used to identify TAZs where safety management for severe crashes
is most necessary. A similar map may be produced for other types
of crash of interest.

The alternative to identify TAZs that require particular safety
conscious attention from the authorities is to consider the factors
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identified to be significantly associated with each of these crashes.
The analyses in the previous section revealed the significant factors
associated with total, severe, peak-hour, and pedestrian- and bicycle-
related crashes. For example, among the trip variables, home-based
shop productions, light-truck productions, and external–internal
attractions were positively associated with severe crashes (Table 2).
Among roadway factors, the highest positive association for severe
crashes was found for total roadway lengths with 45- and 65-mph
speed limits (Tables 4 and 5). This clearly indicates a need to
emphasize safety treatments in TAZs with longer miles of roads
that have 45- and 65-mph posted speed limits. Also, safety author-
ities may prioritize safety issues with TAZs with higher home-based
shop productions, light-truck productions, and external–internal
attractions.

Similar analogies can be drawn for total, peak-hour, and pedestrian-
and bicycle-related crashes. Among several positively associated
factors for total crash frequency, roadway lengths with 45- and 65-mph
posted speed limits were the highest (Tables 4 and 5). Therefore,
safety treatment at TAZs with more miles of such roads is expected
to reduce severe crashes as well as overall crash frequency.

Three home-based trip variables (work productions, shop attrac-
tions, and other productions) had positive associations with peak-hour
crashes. Therefore, zones that generate a high number of such trips
should be considered for safety management strategies. Also, peak-
hour crashes were found to be positively associated with roadway
lengths with 35-, 45-, and 65-mph posted speed limits.

The number of intersections per TAZ was the common factor
associated with every type of crash investigated in this study. Inter-
sections by their own unique nature demand special attention and
have been emphasized in the safety literature.

CONCLUSION

This paper analyzed various trip types and roadway characteristics
to analyze crash frequencies per TAZ. The results reveal that total trip
productions and total trip attractions provide a better model fit for
the total and peak-hour crashes. On the other hand, severe crashes
were best associated with different trip-related variables, whereas
the pedestrian- and bicycle-related crash model was best described by
the roadway characteristics of a TAZ. This is a significant conclusion
that might indicate that different approaches to zonal level analysis
should be considered on the basis of type or severity of crashes
being estimated.

In addition, the study results conform to the trip effects as a
traffic exposure measure. However, considering trips as an exposure
measure has certain limitations as the trips vary in length and time.
The other exposure measures were not readily available for the
TAZs used in this study. A few signs of the variable estimates for
aggregate level models were difficult to explain. This particular
issue has been reflected in the road safety literature; for example, De
Guevara et al. (14) argued that for the data aggregated to the TAZ
level a theoretically defensible fatal crash model is proved to be the
most difficult to find. Also, it is recommended that investigation of
the spatial relationship, if any, among the neighboring TAZs be
considered in future research.

This study approach bears the potential for developing proactive
and reactive safety countermeasures in transportation safety planning.
Reactive safety countermeasures can be applied by transportation
officials for built-up areas. High-risk zones can be identified according
to crash distribution per TAZ. These zones may be considered in



allocating safety funds. The identified significant factors would give
decision makers, engineers, and planners a head start in enhancing
safety features on the street network, if necessary. Proactively, the
contributing factors identified as associated with different types of
crashes may be built into a transportation network with appropriate
safety measures. Therefore, the study approach helps in examining
crash-specific factors to undertake necessary safety treatments at a
zonal level for any particular crash type.

This paper evaluated safety management strategies, mostly in
the form of identifying safety problems and contributing factors at
the zonal level. TAZs could be identified for specific strategies to
improve safety through better planning and management.
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